

EVOLUCIÓN DE LOS MATERIALES PLÁSTICOS (INFLUENCIA EN EL RECICLADO)

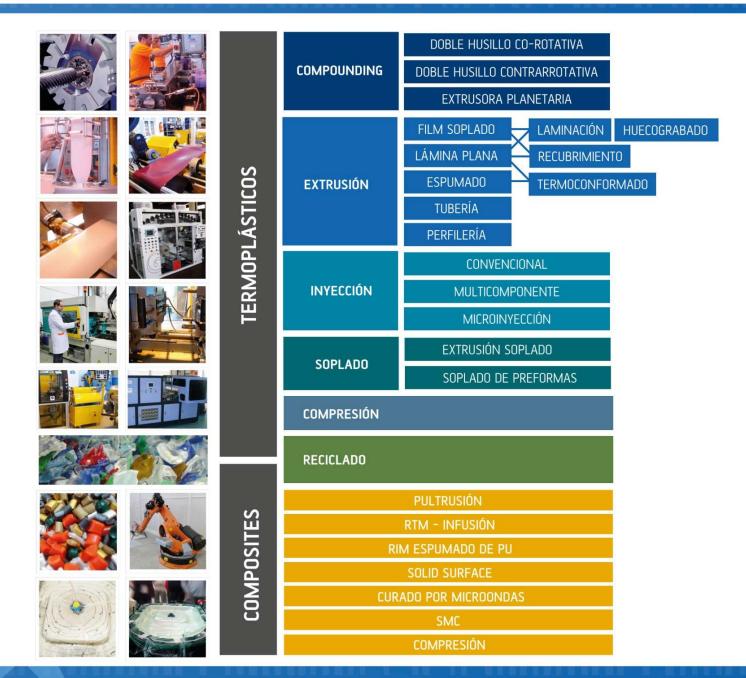
Eva Verdejo

Responsable de Departamento de Sostenibilidad y Valorización Industrial everdejo@aimplas.es

AIMPLAS

25 años de experiencia 110 profesionales Más 8.500 m² de instalaciones

AIMPLAS



- > Proyectos I+D+i
- > Análisis y ensayos
- > Procesado de materiales
- > Asesoramiento técnico
- > Inteligencia Competitiva
- > Formación

AIMPLAS

123 proyectos I+D+i

30 europeos

93
nacionales

227
empresas

183
PYMEs

Más de 12.6 millones € retorno empresa

DATOS 2015

Reciclabilidad

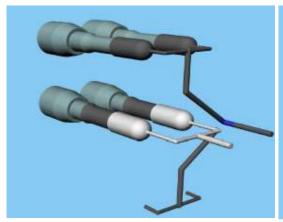
Hablar de reciclabilidad es:

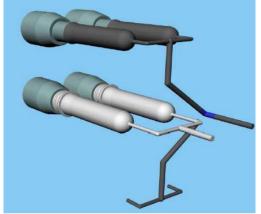
- Aplicación
- Calidad
- Precio
- Propiedades:
 - Procesabilidad
 - Apariencia (transparencia)
 - Físico-mecánicas...

Tendencias que pueden influir en el reciclado

- Multicapa
- Envases compuestos
- Reducción de peso: espumado.
- **Reducción de precio: empleo de cargas.**
- Impresión directa / IML
- Bioplásticos

Sustitución de otros materiales por plástico

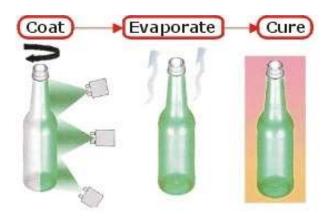


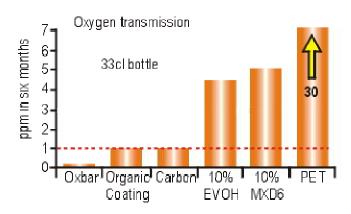

Tenemos un envase con diferentes capas de material, a priori no separables.

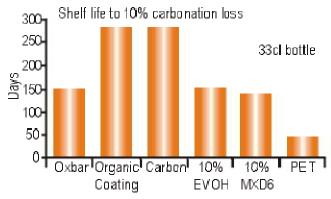
Va muy relacionado con mejores propiedades (mayor vida útil del Proyecto) y con menor espesor.

El aumento en los últimos años ha sido espectacular y se espera que siga así.

Envase rígido (Botellas): Co-inyección

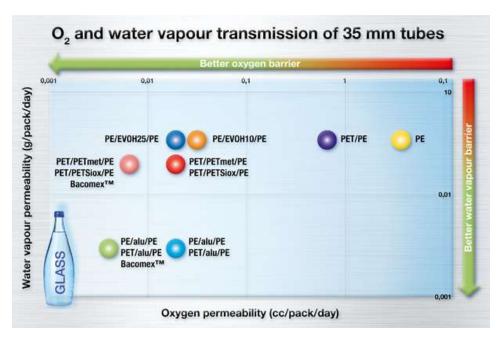





Envase rígido (Botellas): Recubrimientos

Tecnologías:

- Actis (Sidel): carbón.
- Bairocade (PPG Industries): Epoxi-amina.
- Plasmax (SIG): Silicato (SiOx).
- Glaskin y Sealica (TetraPak): Silicato (SiOx).
- Best PET (Krones): Silicato (SiOx).



Se trata de diferentes materiales que disminuyen la calidad del reciclado de forma considerable:

Distinta temperatura de fusion

Distintas propiedades de los materiales.

Mejoras:

- Deslaminación.
- Compatibilización

+ tecnología propia

La tecnología desarrollada por **Sulayr Global Service** (registrada en dos patentes) se basa en la separación, mediante procesos mecánicos y químicos, de PET multicapa (PET-PE) procedente de los envases que contienen alimentos. De su tratamiento se obtiene lo siguiente:

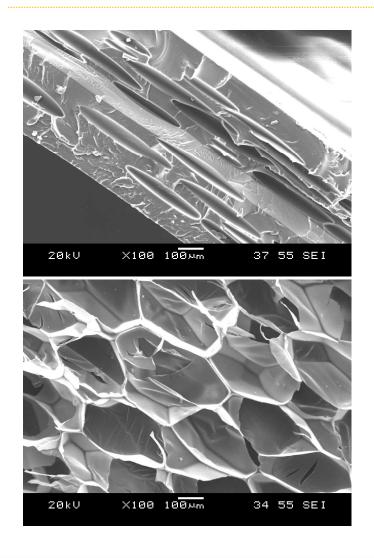
- 75% de PET, que es incorporado en todo su porcentaje a la cadena de producción de empresas lamineras para alimentación.
- 25% de PE, que se utiliza la fabricación de objetos de polietileno como tuberías o madera plástica.

Con su aplicación se devuelve al ciclo de producción millones de kilos anuales de PET Recuperado y se evita, con ello, la emisión a la atmósfera de 36.000 toneladas de CO2 al año.

Material reciclado			Compatibilizante		
Tipo	Ejemplo	Relación media (%)	Tipo Proporción Beneficios (%)	Beneficios	
Polímero apolar + polímero apolar	PP/PE	80-70/20-30	VERSIFY™ 3401	5-15	Compatibilización, minimización de delaminación, modificación de impacto, mejora de la tenacidad.
			ENGAGE™ 8200	5-15	Modificación de impacto, mejora de la tenacidad.
			ENGAGE™ 7447		
	PEAD/PP	80-70/20-30	VERSIFY™ 3401	5-15	Compatibilización, grande modificación de impacto.
			ENGAGE™ 8200	5-15	Modificación de impacto.
			ENGAGE™ 7447		
Polimero apolar + polimero polar	PE/PA de películas (PEBDL/PA)	80/20	AMPLIFY™ GR 205	5-10	Compatibilización, modificación de impacto, resistencia mecánica.
			AMPLIFY™ GR 216	5-10	Compatibilización, modificación de impacto, mejor resistencia mecánica y mayor flexibilidad.
	PE/PA de materiales rígidos (PEAD/PA)	96/5	AMPLIFY™ GR 205	5-10	Compatibilización, modificación de impacto, resistencia mecánica y rigidez.
			AMPLIFY™ GR 216	5-10	Compatibilización, mejor modificación de impacto, mejor resistencia mecánica y mayor flexibilidad.
Polímero apolar + polímero polar +Al	Peliculas laminadas (PE/PP/PET/Al/ pintura)	Sight N	PRIMACOR™ 1410	5	Compatibilización, mejor modificación de impacto, resistencia mecánica.
			AMPLIFY™ GR 216	5	Compatibilización, mejor modificación de impacto, resistencia mecánica.
Polimeros apolares + celulosa	PP/PE/ celulosa	40/40/20	AMPLIFY™ GR 205	5	Mejor procesabilidad.
Polimero apolar + compuesto inorgánico	PP/CaCO _s	80/20	ENGAGE™ 8200	5-15	Modificación de impacto, mejor estiramiento en la ruptura y ductibilidad.

Tenemos diferentes materiales en el mismo producto, separables fácilmente o no.

La separación nos va a dar la clave de la reciclabilidad.

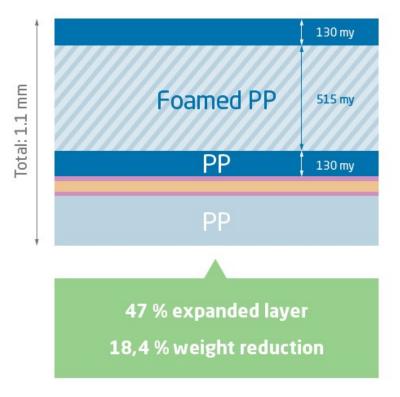


Hay elementos muy críticos:

Metal unido al plástico (fundido/soldado) Muelles y rodamientos

Tecnología Mucell de espumado de PET moldeado por soplado (PTI y Trexel)

Mejora de la rigidez del envase, barrera a la luz, especial para el envasado de leche.



15% material reduction Open new technology

PP/EVOH/PP (1)

Identificación engañosa por densidad (flotación de materiales en lavadero).

Una vez separada, en la calidad del material reciclado final, no influye.

Reducción de precio: empleo de cargas

Envases de limpieza

Empleo de carbonato cálcico para envases de leche, reduce hasta un 25% el HDPE (reduce tiempo de ciclo al incrementar la transferencia de calor y acorta la etapa de enfriamiento e incrementa la rigidez).

Reducción de precio: empleo de cargas

Identificación engañosa por densidad (hundimiento de materiales en lavadero).

Se puede reciclar luego sin problemas, pero hay limitación en producto final por propiedades físicomecánicas.

Impresión directa/IML

Las etiquetas tradicionales, están dando paso a nuevas configuraciones.

Hay que recordar, la importancia de los materiales compatibles y los adhesivos para la reciclabilidad del producto.

Impresión directa

KHS (botellas de PET) KRONES AG

IML

Impresión Barrera funcional

Impresión directa/IML

No posibilidad de separación de etiquetas

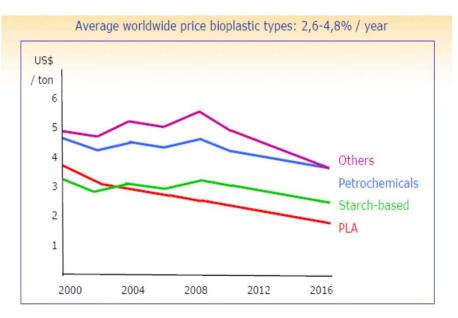
Diferente material/alto grado de impresión

Disminución de reciclabilidad

Color


Diferente temperatura de fusión

	BIODEGRADABLE	NO BIODEGRADABLE
ORIGEN RENOVABLE	Ejemplos: Almidón, PHAs, PLA, etc.	Ejemplos: PA 11 Rilsan® (Arkema), Polietileno ecológico a partir de caña de azúcar (Braskem), etc.
ORIGEN NO RENOVABLE	Ejemplos: Alcohol polivinílico, poliésteres sintéticos (PBS, PBAT, PTT,etc)	Ejemplos: Polímeros convencionales (PP, PE, PET, etc)


BIODEGRADABLE NO BIODEGRADABLE Ejemplos: RENOVABLE Ejemplos: ORIGEN Rilsan® (Arkema), BIOPLASTICOS Almidón, PHAs, PLA, ctileno ecológico a artir de caña de azúcar etc. (Braskem), etc. Ejemplos: RENOVABLE Polímeros Alcoho divinílico, convencionales (PP, PE, poliésteres sintéticos PET, etc) (PBS, PBAT, PTT,etc)

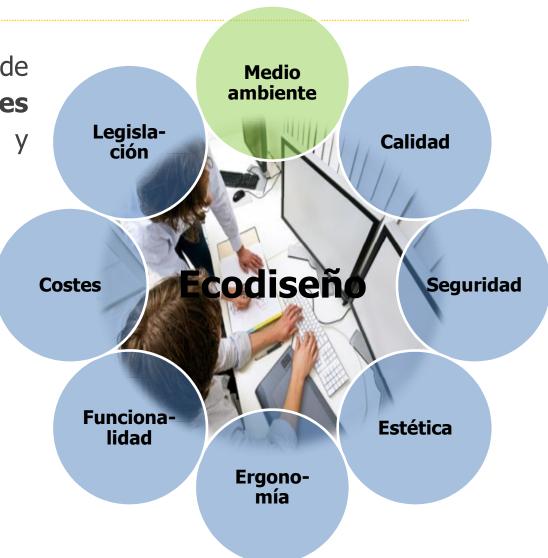
Incremento en la fabricación de bioplásticos

Variación en el precio de los bioplásticos

Note: Category "other" includes cellulose films, PTT from bio-based 1,3-PDO, bio-based polyamide and PUR from bio-based polyols; category "Bio-based monomers" includes primarily bio-based epichlorohydrin.

Fuente: PRO-BIP 2009 (Universidad de Utrecht)

Fuente: Ceserana Research 2009 Market study: bioplastics


Los materiales de origen renovable y reciclado tradicional no presentan diferencias.

Los materiales biodegradables pueden dar lugar a problemas de reciclado > Necesidad de una gestión adecuada (nuevo contenedor).

Ecodiseño

Integración sistemática de los **aspectos ambientales** en el proceso de diseño y desarrollo del producto

Ecodiseño no es sólo medio ambiente

Muchas gracias

Contacte con nosotros:

www.aimplas.es

info@aimplas.es

Tel. 96 136 60 40

www.facebook.com/aimplas

Twitter: @aimplas

